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ABSTRACT

Sample sizes necessary to detect changes between 2 yr in the total annual'

population abundance of juvenile groundfish in the northwestern Gulf of Alaska

were estimated using Monte Carlo simulation for a statistical test described 

by Brown and Forsythe.-- Parameters for simulations were estimated from actual

bottom trawl survey data, covering 12 geographic regions and 3 yr, by the

method of maximum likelihood; these data were described in detail in earlier

reports. The catch per unit effort (CPUE) data from these surveys were

generally heteroscedastic and skewed. Fishing effort was measured by

calculating an estimate of area swept during tows of the survey trawl net.

Total abundance in each region was estimated by multiplying the sample mean of

CPUE in that region by the area of the region. Fish catches were usually

simulated using a negative binomial distribution. The two parameters of the

negative binomial distribution were made into functions of fishing effort and

mean fish abundance in such a manner that mean catch was proportional to

effort and to mean abundance, and CPUE variance was a power function of mean

CPUE.

Simulated survey data covering 2 yr were analyzed using analysis of

variance (ANOVA), but the usual constraints on ANOVA coefficients were

modified because the areas of the geographic regions were unequal. In

addition, the usual F-test of the significance of differences between years

was modified to account for heteroscedasticity using the method of Brown and

Forsythe. In simulations using sample sizes of 180 hauls/year (about

0.12 hauls per square kilometer-for each of the 12 geographic regions),the

predicted probability was greater than 87% of correctly detecting the

direction of a change by a factor of 3.16 in annual abundance of young-of-the-

year walleye pollock, Theragra corresponding probabilities

Preceding Page Blank 
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of correctly detecting the direction of a change by a factor of 10 in annual

abundance of 1-yr-old walleye

and young-of-the-year Pacific

94%, and 48% respectively.

pollock? 1-yr-old sablefish, Anoplopoma fimbria;

cod, Gadus macrocephalue, were greater than 93%,

Simulated surveys were also used to test the validity of some statistical

methods commonly used with this type of data. The method of Brown and

Forsythe worked reasonably well for 2 yr of data despite heteroscedasticity

and non-normality as long as at least 2 hauls/year were allocated to each

geographic region, but some other method may be necessary for more than 2 yr

of data. The validity of the method of Brown and Forsythe suggests that the

heteroscedasticity of this data may be more crucial than non-normality in

selecting a valid statistical test of the significance of differences in total

abundance between years. In contrast, application of ordinary ANOVA to CPUE

data transformed using log(CPUE+l) , rank, or power transformations worked

poorly, especially when geographic region by year interactions in abundance

were present. When the null hypothesis of no difference in total abundance

between years was true, the expected probability of rejecting the null

hypothesis was 5%, and geographic region by year interactions in abundance

were present, then estimated probabilities of rejecting the null hypothesis

were greater than 60% in some cases in simulations using the log(CPUE+l)

transformation. There are theoretical reasons to expect that similar problems

will occur in general if total abundance is estimated as in this paper,

ordinary ANOVA is applied to CPUE data transformed with any nonlinear

transformation, and geographic region by year interactions are present.

Limitations of this study and suggestions for further research are also

discussed.
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INTRODUCTION

This study, the final paper in a series of three reports, presents the

results of an analysis of sample size requirements necessary to detect changes

in year-class strengths of one or two juvenile age groups of three

commercially important species of groundfish in the northwestern Gulf of

Alaska. Each year-class strength was estimated using an area swept method

described in Smith and Bakkala (1982: equations 13-14), except that number of

individuals instead of biomass was estimated. The age groups analyzed were

young-of-the-year and 1-yr-old walleye pollock, Theragra chalcogramma; 1-yr-

old sablefish, Anoplopoma fimbria; and young-of-the-year Pacific cod, Gadus

macrocephalus. The data used for this analysis were collected in 12 major

inlets of Kodiak Island and along the central Alaska Peninsula during the

months August-September 1980-82 as part of trawl surveys to assess the

abundance of shrimp populations. The surveys were conducted by the Alaska

Department of Fish and Game (ADF&G), but biologists from the National Marine

Fisheries Service (NMFS) also participated to make possible increased sampling

of juvenile fish. Detailed descriptions and initial analyses of these surveys

are given in the first two reports of this series, Smith et al. (1984) and

Walters et al. (1985). These reports described the geographical distribution

and abundance of juvenile age groups of major fish species, and their annual

variations: provided initial evaluations of the feasibility of measuring year-

class strengths? related results to other research in the region; and provided

recommendations for further work.

Although the primary goal of this final study was to estimate sample size

requirements, a number of problems had to be solved before this was possible.

First, statistical characteristics of the survey data had to be further
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evaluated. Then an appropriate statistical test had to be found to detect

differences in year-class strength between years. And, finally, a method had

to be chosen and implemented to estimate the sample size requirements for this

test.

The statistical and mathematical methods relevant to the above three

problems are discussed in this paper , and important statistical

characteristics of the survey data are presented. The statistical models and

parameter estimates used to describe the survey data are listed, and the

statistical test which was selected to detect differences in annual population

size between 2 yr (Brown and Forsythe 1974a) is presented. It is shown why

common statistical tests based on nonlinear variance-stabilizing

transformations were inappropriate. The use of Monte Carlo simulation to-

estimate sample size requirements for the selected statistical test is

described and the resulting estimates presented. Limitations of this study,

conclusions, and suggestions for further research complete the paper.

Eventually it may be possible to use juvenile year-class strengths to

provide warning a year or more in advance of possible strong or weak-year-

class recruitment to commercial fisheries. The reliable detection of

significant changes in juvenile year-class strengths by means of adequate

sampling and appropriate statistical tests appears to be a prerequisite for

such a method.
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MATERIALS AND METHODS

Background

Analysis of variance (ANOVA) has often been used to determine which

changes in a continuous dependent variable can be attributed to one or more

categorical variables. In this study, for example , one wishes to determine

what changes in year-class population density can be attributed to changes in

the categorical variables "year" and "geographical location." It is

frequently assumed in ANOVA that each measurement is statistically

independent, that effects due to the independent variables are fixed, and that

any-variation (random error) not caused by the independent variables has a

normal (Gaussian) distribution with constant variance. The assumption that'

the variance is constant implies that it is independent of any changes in the

independent variables. An ordinary F-test is appropriate when these

assumptions are essentially met. Published charts of the power of the F-test

can be used to determine approximate sample sizes needed to detect specified

changes using ANOVA in conjunction with an ordinary F-test under these

assumptions (Scheffe 1959: section 2.8). However, in this study, catch per

unit effort (CPUE) variances were not constant with changes in year and

stratum, but were heteroscedastic ("heteroscedastic" is a statistical term

which means that the variances were not constant). In addition, the CPUE data

were highly skewed and therefore non-normal (e.g., Smith et al. 1984: fig. 9).

For these reasons, sample size requirements were not determined using charts

of the power of the F-test. Instead, the performance of different sample

sizes was evaluated using Monte Carlo simulation.

Simulation may be defined as a numerical computational technique for

conducting experiments,. It utilizes mathematical and logical models that



4

describe the behavior of a system or system component. Monte Carlo simulation

may be defined as simulation which includes stochastic sampling from a

probability distribution or distributions (Rubinstein 1981: 6,11).

An important consideration in the design of the simulation model

described in this paper was that variance of CPUE in a given year and stratum

appeared to be a power function of mean CPUE. A weighted negative binomial

model described by Bissell (1972) and used by Zweifel and Smith (1981) to

model fish catches was modified to account for this power function

relationship,, and used to model fish catch in each simulated survey trawl

haul. Each haul was considered to be one "sample." The assumptions in the

modified model were: 1) the estimated count of fish in the catch of each haul

had a negative binomial, Poisson, or binomial probability distribution;

2) catch counts were stochastically independent of counts in other hauls;

3) mean catch was a linear function of fishing effort and fish population

density in the environment; 4) fishing effort was measured essentially without

error; 5) variance of CPUE was essentially a power function of fish density:

and, 6) mean fish density was constant in a given year and geographic location

(stratum). In this paper, CPUE is defined to equal catch divided by effort;'

consequently assumptions 3 and 4 imply that the catch variance was

proportional to the square of the fishing effort. The parameters in this

model are the fish densities in each year and stratum; and a multiplier and

exponent used to calculate CPUE variance as a power function of fish density.

Both the model of Bissell (1972) and the model used in this paper are examples

of models which are linear except for nonlinear, non-normal, heteroscedastic

error terms. The method of maximum likelihood (ML) is widely applicable to

estimating parameters of distribution functions (Rao 1973: 354), and has

certain optimal properties (Mood et al. 1974: 284-286, 358-360). For
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instance, in many cases ML estimates are asymptotically unbiased and

asymptotically of minimum variance. Utilizing the ML method has the

disadvantage that estimates often must be calculated iteratively, which may

require large amounts of computer time. In addition, for some distribution

functions, poor starting points for the iterations may cause a failure to

converge to the true ML estimates of the parameters. However, ML was

considered the method of choice to estimate parameters for the negative

binomial model (Bliss and Fisher 1953) and the weighted negative binomial

model of Bissell (1972). Since the model used in this study usually assumes

an underlying negative binomial distribution, ML was also used to estimate its

parameters.

The data used in this study were collected in a total of 366 trawl hauls

made in 12 different geographic regions in the Gulf of Alaska (Fig. 1,

Table 1) in August-September of 1980-82; Smith et al. (1984) describe and

present results of initial analyses of this data. The allocation of sampling

effort (number of hauls per region per year) was not proportional to the areas

of the regions given in Table 1; further information regarding the allocation

of sampling effort is given in Smith et al. (1984: 10-12).

Estimated counts of fish at age and estimates of fishing effort were

analyzed in this study. Estimated counts were determined as follows. The

entire catch was weighed , and a sample (sample A) of the catch was selected as

described by Hughes (1976). Sample A was sorted to the lowest feasible

taxonomic group (usually species) , and each taxonomic group was weighed and

counted. For species of interest, a sample (sample B) was selected from

sample A, and the ages of fish in sample B were estimated using methods
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Figure 1 .--Map of the study area in the northwestern Gulf of Alaska showing
the 12 strata used for estimating juvenile fish abundance, 1980-82
(Smith et al. 1984).
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Table 1 .--Survey areas used in the northwestern Gulf of Alaska for estimating
juvenile fish abundance, geographic areas, and sampling effort,
1980-82 (after Smith et al. 1984: table 1).

*See Figure 1.
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described in Smith et al. (1984: 13-15). Counts of a given species i at age j

in a given trawl haul were then estimated by

(1)

where WT is the total weight of the catch , WA is the total weight of sample A,

NAi is the number of fish in sample A of species i, NBi. is the number of fish

in Sample B of species i, and NBij is the estimated number of fish in sample B 

of species i, and age j. Consequently, estimated counts of fish at age were

not necessarily integers.

Fishing effort was measured by estimating the area swept by a 61-foot

(19-meter) shrimp trawl net during a tow: i.e., the estimated area swept

equaled the distance traveled during the trawl haul multiplied by an assumed

path width of 9.75 m. The net was towed using 1.7 x 2.7 m V-doors

(otterboards), weighing approximately 540-590 kg, to spread the net. The

distance traveled during the haul was measured using Loran-C or radar fixes;

it was intended that the standard tow be either 15 or 30 min in duration

(Smith et al. 1984: 12). The resulting estimates of effort had a range of

0.52 x 104 m2 to 3.54 x 104 m2. Wathne (1977: 21-22) described three tows

using 370 kg, 1.5 x 2.1 m V-doors and suggested that between-tow variability

in path width may be of some significance with this gear; from this data an

assumed mean path width of 9.75 m appears reasonable for tows using 1.5 x

2.1 m V-doors. In NWAFC (1981), 11 tows are described which used 363 kg,

1.5 x 2.1 m V-doors and resulted in mean path widths in a range of about 4.6-

13.1 m, and 11 tows are described which used 526 kg, 1.5 x 2.1 m V-doors and

resulted in mean path widths in the range 9.1-12.2 m. Despite the different

V-door size in the present study, it was assumed that mean path widths equaled

9.75 m.



9

The heteroscedasticity and non-normality of the CPUE data were important

characteristics considered when selecting an appropriate statistical test of

population size changes. It is expected that these characteristics would not

be greatly changed if better estimates of path width were available. Relative

population size estimates also might not be greatly affected. However, the

estimates of absolute population size used in this study are inversely

proportional to the path width assumed, so that estimates of the probability

of detecting specified changes in absolute population size may be affected to

some degree by this assumption.

The CPUE estimates (catch divided by effort) used in this study have

units of number/10,000 m2 and are summarized in Tables 2-5. The sample

coefficient of skewness is defined as the third sample moment about the mean

divided by the 1.5th power of the 'second sample moment about the mean

(Snedecor and Cochran 1980: section 5.13). It is a measure of the degree of

symmetry of the data; a sample coefficient of skewness close to zero indicates

that the data appears symmetric. If the CPUE data were symmetrically

distributed, the sample coefficient of skewness (g1) shown in Tables 2-5 would

be expected to be less than zero with the same frequency as it was greater

than zero. However, it was less than zero only 4 times, but greater than zero

100 times. For each of the four species or age groups in Tables 2-5, a two-

sided statistical test based on tables of the binomial distribution showed

that the count of negative values of the sample coefficient of skewness was

significantly different at the 99.6% level from the count of positive values

of the sample coefficient of skewness , under the null hypothesis that the data

were symmetrically distributed. In each case the count of positive sample

coefficients of skewness was greater than the count of negative sample

coefficients of skewness.
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Table 2 .--Summary statistics describing catch per unit effort (CPUE) of
young-of-the-year walleye pollock, by year and stratum, in the

northwestern Gulf of Alaska..

*The sample coefficient of skewness is defined as the third sample moment
about the mean divided by the l.5th power of the second sample moment
about the mean (Snedecor and Cochran 1980: section 5.13).
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Table 3 .--Summary statistics describing catch per unit effort (CPUE) of
1-yr-old walleye pollock, by year and stratum, in the
northwestern Gulf of Alaska.

*The sample coefficient of skewness is defined as the third sample moment
about the mean divided by the l.5th power of the second sample moment
about the mean (Snedecor and Cochran 1980: section 5.13).
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Table 4. --Summary statistics describing catch per unit effort (CPUE) of
1-yr-old sablefish by year and stratum, in the northwestern Gulf
of Alaska.

*The sample coefficient of skewness is defined as the third sample moment'
about the mean divided by the 1.5th power of the second sample moment
about the mean (Snedecor and Cochran 1980: section 5.13).
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Table 5 .--Summary statistics describing catch per unit effort (CPUE) of
young-of-the-year Pacific cod, by year and , stratum, in the
northwestern Gulf of Alaska.

*The sample coefficient of skewness is defined as the third sample moment
about the mean divided by the 1.5th power of the second sample moment
about the mean (Snedecor and Cochran 1980: section 5.13).
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This indicates that the data are not symmetrically distributed but

generally have positive skewness , and that this asymmetry is not alleviated by

stratifying by year and geographical region. Since the normal (Gaussian)

distribution is symmetric , this also indicates that the data are non-normal.

Figure 2 shows a histogram of a subset of this data with a typical sample

coefficient of skewness. The non-normality and asymmetry of the subset are

evident: in fact, the underlying probability density function may well be

strictly monotone decreasing.

Another characteristic of the data was the frequent occurrence of zero

catches. Catch per unit effort values cannot be less than zero, but values

equal to zero frequently occurred. No young-of-the-year pollock were caught

in 109 hauls, no 1-yr-old pollock in 171 hauls, no 1-yr-old sablefish in 283

hauls, and no young-of-the-year Pacific cod in 328 hauls.

From Tables 2-5, it is evident that the data are heteroscedastic. For a

given species or age group, the maximum sample variance was more than 400

times the minimum nonzero sample variance. Harris (1975: section 8.2)

recommended that an ordinary F-test not be used in ANOVA if the ratio of the

maximum sample variance to the minimum sample variance is greater than about

20. Sample variances equal to zero occurred for each of the species or age

groups. The true underlying variance being measured can plausibly equal zero

for this type of data, because a species or age group may be completely absent

from a region during the time of the survey, and the resultant population

density estimate of zero would then also have a variance of zero. For this

reason, it seems unreasonable to assume that the variance-covariance matrix of

the observations is positive definite; rather it may be only non-negative

definite. This can affect the computational methods used- (Searle 1983:

equation 16).
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Figure 2. --Histogram of catch per unit effort (CPUE) of 1-yr-old walleye
pollock in Alitak Bay in 1980. The sample coefficient of skewness
is 1.554.
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In all but four cases in Tables 2-5, if the sample mean was unequal to

zero, then the sample variance exceeded the mean. All four exceptions

occurred for sablefish.

It was found that representing the sample variances as a power function

of the sample means provided a good fit to the data , since the log-log plots

of the nonzero sample means and variances were close to a straight line

(Figs. 3-6). The unweighted correlation of the logarithms of the nonzero

sample variances with the logarithms of the nonzero sample means was more than

96% for each of the species or age groups shown.

Statistical Models and Parameter Estimation

A three-parameter Weibull distribution (Bury 1975: section 12.11) was

used to model the statistical distribution of effort. The Weibull

distribution is often used to model lifetime data; in this case the amount of

effort expended until the haul was terminated was considered analogous to

"lifetime." The three-parameter Weibull cumulative distribution function used

was

(2)

where E is fishing effort (10,000 m2), and P1, P2, and P3 are parameters. The

probability that E < P3 is zero. It was assumed that the distribution of

fishing effort was independent of geographical region, year, species, and

species density. The probability density function of the three-parameter

Weibull distribution was fitted using the method of maximum likelihood with a

FORTRAN computer program which used the International Mathematical and

Statistical Libraries (IMSL 1982) subroutine ZXMIN. (However, Kappenman



Figure 3. --Log-log plot of sample variance versus sample mean of CPUE of
young-of-the-year walleye pollock, with weighted least squares and
maximum likelihood fitted lines.

Figure 4. --Log-log plot of sample variance versus sample mean of CPUE of
1-yr-old walleye pollock, with weighted least squares and maximum
likelihood fitted lines.



Figure 5. --Log-log plot of sample variance versus sample mean of CPUE of
1-yr-old sablefish, with weighted least squares and maximum
likelihood fitted lines.

Figure 6.--Log-log plot of sample variance versus sample mean of CPUE of
young-of-the-year Pacific cod, with weighted least squares and
maximum likelihood fitted lines.
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(1985) has described a method of parameter estimation for the three-parameter

Weibull distribution which appears preferable to the method of maximum

likelihood; this new method may be used in the future.)

The resulting parameter estimates were P1 = 3.806, P2 = 1.683, and P3 =

0.2826. Parameter P1 is unitless; parameters P2 and P3 have units of

10,000 m'. Parameter P3 was significantly different from zero at the 96.0%

level using a generalized likelihood ratio test (Mood et al. 1974: 440-441).

Figure 7 gives an indication of the goodness of fit of the fitted Weibull

distribution to the effort data. It appears most of the lack of fit was

caused by nonrandom termination of 117 hauls at 0.50 or 1.00 nautical miles

(0.90 x 104 m2 or 1.81 x 104 m2); the average duration of these hauls was 17

and 30 min. Extremely small (<0.55 x 10 4 m2) and extremely large (>3.0 x

104 m2) values of effort also occurred more frequently than expected from the

fitted Weibull distribution, but the resulting lack of fit appears minor. In

future work, a double exponential (Laplace) or related distribution may be

used instead of a Weibull distribution in order to improve the fit.

Additional improvement to fit may also be obtained by separating the hauls

into two populations according to whether a duration of 15 or 30 min was

originally intended, and fitting a different statistical distribution to each

population.

The statistical distribution of catch was modeled as follows. Let Cijuv

and, Eijv be the catch (no.) and fishing effort (10,000 m
2) for geographic

region i, year j, species or age group u, and haul v. It is assumed that

(3)

where "var" and "mean" are functions giving the expected value of the mean and

variance, and P4u and P5u are parameters. When it is apparent from the
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Figure 7. --Histogram of fishing effort during 1980-82 surveys in the
northwestern Gulf of Alaska, with graph of expected frequencies
calculated using a fitted Weibull distribution.
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context which species or age group is being referred to; P4u and P5u may be-

referred to as P4 and P5. The above equation implies that the variance of

CPUE is a power function of its mean. It is assumed that

mean (Cijuv) = Eijv x Miju, (4)

where Mijv is the apparent underlying population density (no./10,000 m2).

Although Eijv has a Weibull distribution, it is assumed to be measured without

significant error, so that if Eijv is given, it may be treated as a constant.

This implies that given Eijv,

(5)

P5u

and

Combining the above two equations gives

(6 )

(7)

It was assumed that Cijuv is an integer. Equations 4 and 7 imply that

var(Cijuv) could be greater than, equal to, or less than mean (Cijuv),

depending on the value of Eijv, P4u, P5u, and Miju. It was almost always the

case in this study that var (Cijuv) > 1.01 x mean (Cijuv).
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The negative binomial distribution has often been used to model the count

of fish in catches (Zweifel and Smith 1981, Taylor 1953). No test was made of

the goodness of fit of the negative binomial to the raw catch data in this

study, and it is possible that there were significant deviations from a

negative binomial distribution, perhaps because some counts were estimated

using subsamples or because of some other reason. However, examination of the

data indicated that the negative binomial appeared plausible. It also seems

reasonable that inferences drawn in this study assuming a negative binomial

distribution will not be severely affected by plausible deviations from this

assumption. Nonetheless, it would be useful to develop some test of the

validity of an underlying negative binomial distribution.

In addition to the negative binomial, the Poisson and binomial

distributions can be used to model counts of fish in catches (Elliott 1977).

The variances of the negative binomial, Poisson, and binomial distributions

are respectively greater than, equal to, or less than the mean of the

distribution. These distributions were used to model the catch of fish in

this study. Although the below parameterizations may appear complex, all

three distributions satisfy Equation 4 exactly, so that expected catch is a

linear function of effort. In addition, the negative binomial distribution

satisfies Equation 3 exactly, and the Poisson and binomial distributions

satisfy Equation 3 approximately, so that the expected variance of CPUE is

essentially a power function of its expected mean.

If var (Cijuv) > 1.01 x mean (CijUv), then Ci Juv was assumed to have a

negative binomial distribution with the probability density function

(8)
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of maximum likelihood using a log likelihood function based on the negative

binomial (Equation 8), whenever the estimate of var (Cijuv) was greater than

the estimate of mean(Cijuv). The corresponding estimates of Miju and P4u were

calculated using antilogarithms. It was not found necessary to include the

Poisson and binomial distributions (Equations 11 and 12) in the log likelihood

functions. An iterative process was used to find the maximum likelihood

estimates. First, preliminary estimates of log10Miju were found by taking

logarithms of the nonzero sample means of the CPUE values for each given year

and geographical region; these sample means and associated sample variances

are listed in Tables 2-5. If a sample mean equaled zero, then the

corresponding estimate of Miju was assumed to also equal zero. All CPUE

values corresponding to sample means which equaled zero were deleted from the

data sets used for maximum likelihood estimation. Preliminary estimates of

were estimated by weighted least squares linear regression of

logarithms of sample variances on logarithms of sample means (Perry 1981:

equation 2); each case weight used in the regression was set equal to one less

than the number of hauls used in the associated sample mean. The regression

lines calculated using weighted least squares are shown in Figures 3-6. After

calculating preliminary parameter estimates, but before beginning the maximum

likelihood estimation process, the data values Cijuv were set to equal

round( Cijuv ) . In the case of sablefish, 1.1 was used as the initial estimate

of log10P4u instead of the weighted least squares estimate of 0.674, so that

additional computer programming was not necessary in order to include Poisson

or binomial terms in the log likelihood function. However, it was later found

that the maximum likelihood estimation process converged to essentially the

same final parameter estimates for sablefish , even if the initial estimate of
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logloP4u was not increased and Poisson and binomial terms were initially

included.

It is known that the log likelihood function of a negative binomial is

unimodal (Levin and Reeds 1977: theorem 2) However, it is not certain that

the log likelihood function is unimodal when the variance of the negative

binomial is forced to be a power function of the mean, as in Equation 8.

Perhaps a mathematical proof of this could be found. If the log likelihood

function is not unimodal, it is possible that the iterative maximum likelihood

estimation process did not converge to the global maximum of the log

likelihood function, but rather to a local maximum. As a partial check of

this possibility, 41 sets of initial parameter estimates were tried for both

young-of-the-year and 1-yr-old pollock, and 3 different sets were tried for

young-of-the-year Pacific cod. Only one set of initial estimates was used for

1-yr-old sablefish. Each set of initial estimates was improved ,by using a

FORTRAN computer program which used IMSL (1982) subroutine ZXMIN to maximize

the log likelihood function. In the cases where more than one initial set of

parameters was used, the resulting sets of final parameter estimates for each

species or age group did not appear to differ significantly from each other;

the differences which did occur appeared to be a result of rounding error in

calculation of the log likelihood function coupled with flatness of the log

likelihood function near its maximum. This provided evidence that the

estimates were indeed maximum likelihood estimates.

Final maximum likelihood estimates of the Miju, P4u, and P5u are shown in

Tables 6-7 for each species or age group. Regression lines corresponding to

the final maximum likelihood estimates of P4u and P5u are also plotted in

Figures 3-6. These figures indicate that the slopes of the maximum likelihood

estimates of log variance as a function of log mean appear biased toward zero
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Table 6 .--Maximum likelihood estimates (no./1O,OOO m2) of apparent fish
density, Miju, as a function of year, stratum, and species or age
group.
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Table 7 .--Maximum likelihood estimates of parameter values used to calculate
variance as a power function of the mean.

Parameter name
(units)

Walleye pollock Walleye pollock' Sablefish Pacific cod
young-of-the-year 1-yr-old 1-yr-old young-of-the-

year
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relative to the initial weighted least squares regression estimates. The

slopes estimated using weighted least squares may also be biased toward zero;

Bloch (1978) discusses this problem for unweighted least squares.

Consequently, the maximum likelihood estimates are probably more biased than

the weighted least squares estimates. However, it is possible that the mean-

squared errors of the maximum likelihood estimates are lower, so that despite

bias the maximum likelihood estimates might be better from the point of view

of minimizing mean-squared error.

Selection of a Statistical Test

When estimating sample sizes , one must specify the null and alternative

hypotheses as well as a statistical test of whether to accept or reject the

null hypothesis. In order to be appropriate for this study, the statistical

test used had to take into account the heteroscedasticity and non-normality of

the CPUE data. The null hypothesis specified that the apparent total

population size (number) of a given species or age group in the entire survey

area did not vary from year to year. The alternative hypothesis was that the

total number in the entire survey area did vary from year to year.

An ANOVA method used in conjunction with an F-test based on the method of

Brown and Forsythe (1974a) was found to be appropriate for a comparison

between 2 yr. The ANOVA method and F-test differed from the usual ANOVA and

F-test. It was necessary to modify the usual equations for ANOVA because of

the particular null hypothesis used, and a modified F-test was necessary

because of heteroscedasticity.

Mathematically,

I
( 1 5 )
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equals the total population in the entire survey area in year j of species or

age group u, where I is the total number of strata, and Ai is the area of the

ith stratum. The null hypothesis, Ho, that the total population size did not

vary between years 1,2 ,...,J can be expressed as

(16)

where q and r are any distinct elements of the set 1,2,...,J. Indices

1,2 ,...,J may represent any years; the years need not be consecutive or in

order. In simulations in this study, I=12 and J=2. It is assumed that the

sum of the Ai is greater than zero.

The parameters Miju are assumed to follow a general linear model; i.e.,

(17)

where a, iS the overall mean population density (no./lO,OOO m2) of species or

age group u, biu is the change in density (no./lO,OOO m
2) attributed to

stratum, cju is the change in density (no./lO,OOO m
2) attributed to year, and

diju is the change in density (no./lO,OOO m2) attributed to stratum by year

interaction. As is common in ANOVA, the biu and Cju are defined so that

In this study the parameters au, biu, Cju, and diju are also defined in

such a manner that Equation 16 is true if and only if

for each q. This is convenient because a test of the null hypothesis that
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Equation 16 is true becomes equivalent to a test of the null hypothesis that

Equation 19 is true. It can be algebraically proved that the condition

for each q is sufficient to insure that Equation 16 is true if and only if

Equation 19 is true. Consequently the diju are defined in this study so that

Equation 20 is true, which insures that a test of the null hypothesis that

Equation 16 is true is equivalent to a test of the null hypothesis that

Equation 19 is true. In addition the diju are defined so that

The parameter restrictions expressed by Equations 18 and 21 are quite

common in ANOVA, but the parameter restrictions expressed by Equation 20 are

relatively unusual. When performing an ANOVA of this type, care must be taken

to choose an algorithm or statistical package program that permits

specification of coefficient restrictions such as in Equation 20.

The parameters diju represent interannual shifts in the geographic

distribution of the population. Even if the total population does not change

from year to year, so that each Cju = 0 and the null hypothesis is true, the

geographical distribution of the population may change, which implies that

some of the diju are nonzero. Consequently, even if the interaction effect is

significant, it is still meaningful in this situation to test whether the main

effect due to years is also significant , which would indicate that the total

population size has changed between years.
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For each species or age group u, the estimates of au, biu, Cju, and diju

were simultaneously calculated using. an ordinary least squares multiple linear

regression approach which was programmed in FORTRAN. The algorithm was

mathematically equivalent to the method of Lagrange multipliers used by IMSL

(1982) subroutine AGLMOD, but certain changes were made to reduce the computer

central processor time necessary to perform replicate ANOVA's. The estimates

and tests of significance of the parameters in Equation 17 were made assuming

a fixed effects model. This was felt justified on the following basis: An

effect may be considered random because it is not presently possible to

predict its magnitude very far in advance. Nonetheless, at the time the

effect is measured, the only observable random variation may be due to

measurement and sampling variation, which can both be grouped into a

"measurement error" term. The result is a fixed effects model for describing

the magnitude of the effect at the time of measurement.

An ordinary F-test can be used to test the significance of an ANOVA

effect, but this test can be adversely affected by heteroscedasticity.

However, Brown and Forsythe (1974a: sections 4,7) reexpressed this test as an

F-test of the significance of a set of orthonormal contrasts on the ANOVA cell

means, and compensated for the effects of heteroscedasticity on this test by

using an approximation originated by Satterthwaite (1946: equation 7) to make

an adjustment to the denominator degrees of freedom (df) of the F statistic.

The equations of Brown and Forsythe (1974a) can be reexpressed in matrix form

as follows. Let nij be the number of hauls in stratum i and year j, MCPUEiju

be the sample mean of CPUE in stratum i and year j of species or age group u,

be the sample variance of MCPUEiju. Let m be the (I x J) by 1

dimensional vector of sample means in each ANOVA cell: i.e., element [I x (j-

1) + i] of m is set equal to MCPUEiju. Let V be the corresponding (I x J) by
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1 dimensional vector of the [siju1
2/nij, and let W be the corresponding

(I x J) by 1 dimensional vector of the quantities l/(nij - I). If nij = 1,

then [siju]2/nij is set to zero, and the corresponding element of, W is

arbitrarily set equal to one. Let T be an (I x J) by (J - 1) dimensional

matrix of orthonormal contrast coefficients appropriate- for testing whether

Equation 19 is true: i.e., whether there is an overall difference between

years: Let T' be the transpose of T. Define the function "diag" such that

diag(TT') is the 1 by (I x J) dimensional vector equal to the diagonal of TT'.

Let fij equal element [I x (j-1) + i] of diag(TT'). Define the function

"DIAG" such that DIAG(V) is a square matrix with its diagonal equal to V and

zeroes elsewhere, and let V = DIAG(V), W = DIAG(W), and g =

DIAG([diag(TT')]'). The F statistic used in this study to test whether there

is an overall difference between years was mathematically equivalent to

where trace (TT'V) is the sum of the diagonal elements of TT'V. Brown and

Forsythe (1974a) assumed this F statistic approximately followed an F

distribution with the df of the numerator equal to J-l and the df of the

denominator approximated by a formula mathematically equivalent to
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(23)

It is unnecessary to calculate T in Equations 22-23, because TT' can be

calculated as in Appendix B (Equation 54).

Since the denominator df was generally not an integer, IMSL (1982)

subroutine MDFDRE was used to evaluate the significance of the F statistic in

Equation 22.

Advantages of the method described by Equations 22-23 which were

important to this study were 1) no transformation of the data is necessary,

2) no computational difficulties arise if some of the Siju equal zero, and

3) the method is based on asymptotic normality of ANOVA cell means, so from

the central limit theorem (Snedecor and Cochran 1980: section 4.5; Cochran

1977: section 2.15) it is expected to be robust whenever the nij are

sufficiently large, even if actual distributions of catch and fishing effort

differ from those used in this study. Since the method does not assume that
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variance of CPUE is a power function of its mean, the method is still

applicable even if the variance and mean do not follow this relationship.

Other examples of the approach of Brown and Forsythe (1974a) are given in

Brown and Forsythe (1974b), Iman and Davenport (1976), and Tamhane (1979).

Unless sample sizes were quite small, the use of the method of Brown and

Forsythe (1974a) to calculate an F statistic was found in the cited examples

to be reasonably powerful with approximately correct type I error rates and to

be robust for one kind of non-normality. (A type I error is defined as the

rejection of the null hypothesis, when in fact the null hypothesis is true.

In this study, a type I error rate is defined as the percentage of a set of

replicates for which a type I error occurred.) If J = 2, then the method of

Brown and Forsythe (1974a) is a special case of the method of Rubin (1982:

section 4.2(iv)) discussed in Appendix C; Rubin applied an approximation

described by Box (1954: equation 6.1). Improvements to the method of Brown

and Forsythe (1974a) have been found important in some cases (Rubin 1982,

1983; Tan 1982a,b; Kaiser and Bowden 1983). One of these approximations may

be used in future studies; an improved approximation often is particularly

important if J > 2 (Rubin 1982: section 4.4).

Other approaches besides that of Brown and Forsythe (1974a) do exist for

dealing with heteroscedasticity. A common method of dealing with

heteroscedasticity is to apply a nonlinear variance-stabilizing transformation

to the data, such as a power, logarithmic , or rank transformation, and then

perform an ANOVA on the transformed data (Green 1979: section 2.3.9).

However, nonlinear transformation is generally inappropriate if interaction

effects are present and one wishes to combine density data from several

different regions into a weighted-estimate of total density or population

Size, such as in Equation 16. Appendix A gives examples of uncontrolled
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type I error rates which result from employing the 'commonly used nonlinear

transformation log(CPUE+l); such uncontrolled error rates may be typical for

other nonlinear transformations as well;

These uncontrolled type I error rates are in large part caused by the

presence of interaction effects. If any nonlinear transformation is used and

interactions are present, then Equations 16 and 19 may no longer be

equivalent, and a test of whether Equation 19 is true will no longer be

equivalent in general to a test of whether Equation 16 is true. This causes

apparent type I errors, and leaves one without a convenient way to test the

null hypothesis. Accordingly, use of a nonlinear transformation in

conjunction with a test of a null hypothesis of the type expressed by

Equations 16 and 19 should be avoided for multi-way ANOVA unless it is

appropriate to assume that interaction effects are not present. Even then the

transformation may not be appropriate (Appendix A). Nonlinear transformations

may sometimes be useful for one-way ANOVA or for multi-way ANOVA tests of

hypotheses that can be conveniently expressed in a form compatible with the

nonlinear transformation.

Monte Carlo Simulation

Because of heteroscedasticity and non-normality of the original data, no

attempt was made to analytically estimate the sample' sizes needed to detect

departures from the null hypothesis with given probability. Instead, the

method of Brown and Forsythe (1974a) described in the previous section was

applied to replicate surveys generated using Monte Carlo simulation, and the

ratio of the number of times the null hypothesis was rejected to the total

number of replicates was used to estimate the probability of detecting

departures from the null hypothesis. The resulting probabilities can be used
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to indicate what sample sizes are deemed necessary. Monte Carlo simulation is

not used in the method of Brown and Forsythe (1974a).

The model used for Monte Carlo simulation was implemented in FORTRAN IV

on the Burroughs B7800 computer at the Northwest and Alaska Fisheries Center.

The simulated surveys were assumed to take place in the 12 geographic

regions listed in Table 1, and during 2 different years; therefore I=12 and

J=2. Because variances of CPUE in the simulations are a function of the

underlying population densities , the predicted probabilities of detecting

departures from the null hypothesis are also a function of the underlying

population densities. Consequently, it is necessary to specify the mean

overall population densities in each year as input parameters. Any departures

from these means from one geographic region to another must also be specified

or calculated within the simulation program. Preliminary analyses indicated

that some significant systematic differences in population density between

regions appeared to be repeated from 1980 to 1982 for the species or age

groups surveyed. In addition, interaction effects between regions and years

also appeared significant. However, precise mathematical or statistical

descriptions of these effects were not formulated. Application of an ANOVA

method and an approximate F-test which takes heteroscedasticity into account

may make improved descriptions possible. An empirical formulation of possible

region (stratum) by year interaction effects based on the survey estimates of

apparent population density was used in simulations. This formulation is

 related to the bootstrap method described by Efron and Gong (1983). It was

assumed that stratum by year interactions were essentially random between

years, because it is not known how to predict them in advance. The population

densities in each stratum and year, Miju, were used in simulations to specify

stratum by year interaction effects. Let MESTij, be a survey estimate of



37

Define MEST.ju by

I
(24)

where index j equals 1, 2, or 3, since there were 3 yr of survey data. Define

A.  by

( 2 5 )

Then MEST .ju/A. equals the average estimated density weighted by area in year

j of population u. Define Ziju by

z i j u
(26)

Before simulating each replicate survey, J integers were picked from a random

permutation of the indices of the years of original survey data. For example,

in this study, since there were 3 yr of survey data and J=2 in simulations,

the integers g and h were chosen to equal the first two elements of a random

permutation of the set {1,2,3}. Consequently, the set,{g,h].equaled {1,2},

{2,3), or 11,31 in any given replicate survey with equal probability. The

first J integers of the random permutation were generated by a FORTRAN

subroutine which used an algorithm similar to that of IMSL (1982) subroutine

GGPER. Let PDY1u and PDY2u equal the input parameters of the simulation which

give the true mean overall density (no./1O,OOO m2) in years 1 and 2 of species
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or age group u. Then for each replicate simulated survey, the Miju were

calculated using the formulas

M i 1 u
= PDYlu x zigu (27)

and

Consequently, each Miju was proportional to either MESTigu or MESTihu.

Equations 27 and 28 make it possible to specify both stratum by year

interaction effects and annual mean overall population densities in

simulations, because in any given simulated year j, the average of the Miju

weighted by stratum areas equals PDYju; i.e.,

I
PDYju = ( C Ai X Miju)/A, l (29)

I=1

These equations preserve any systematic effects attributed to strata which may

exist, because the index I referring to strata was not randomized. But since

index j was randomized, the equations do introduce a random component to the

stratum 'by year interactions. It is uncertain to what extent this method may

underestimate or overestimate variability. For instance, g is always unequal

to h, which may tend to overestimate variability due to stratum by year

interactions. In contrast, whenever the survey estimate of population

density, MESTiju, equals zero, then the corresponding simulated density

parameter Miju Always equals zero also. Since MESTiju may have equaled zero

by coincidence, even though the actual population density in that geographic

region and year was nonzero , this could cause an underestimate in simulations

of actual variability.
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Total sample sizes (number of simulated trawl hauls) of 60, 120, and

180 hauls/year were allocated to the geographic regions in proportion to the

areas listed in Table 11 slight adjustments were made so that the sample sizes

allocated to each region would sum to the total specified for each year

despite rounding. The resulting values of nij are listed in Table 8.

Depending on the objectives of a given survey, some other method of allocation

may be more optimal, but this method was chosen for illustration.

Fishing effort in each trawl haul was simulated using the three-parameter

Weibull distribution specified by Equation 2. Samples were generated from

this distribution by the method of inversion (Bury 1975: 542-543). Unless

noted otherwise, the Weibull distribution parameters were P1=3.866, P2=1.683,

and P3=0.2826; P, is unitless and P2 and P3 have units of 10,000 m
L.

Catches in each trawl haul were simulated using the negative binomial,

Poisson, or binomial distributions as specified by Equations 8, 11, or 12.

The values of parameters P4u and P5u are given in Table 7.

As a result of the parameters used in these simulations, only the

negative binomial distribution was used in the simulation of catches of young-

of-the-year and 1-yr-old walleye pollock and young-of-the-year Pacific cod;

the Poisson and binomial distributions (Equations 11-12) were never used. The

probability of the use of Poisson or binomial distributions (Equations 11-12)

to simulate catches of 1-yr-old sablefish was less than 0.04% in any given

trawl haul and occurred only for very small values of fishing effort; in other

cases the negative binomial was used.

A variate from the negative binomial distribution was generated by first

generating a value from a gamma distribution; this value was then used as the

parameter of a Poisson distribution, which in turn was used to generate one
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Table 8 .--Allocation of sampling effort (trawl hauls/year) to geographic
regions in simulated surveys as a function of total sampling
density.

Total sampling density
(hauls/km2)
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variate. The resulting variate can be considered to come from a negative

binomial distribution (Bratley et al. 1983: 174).

In simulations, the IMSL (1982) subroutines GGAMR, GGEON, and GGBN were

used to generate values from the gamma, Poisson, and binomial distributions.

When uniformly distributed random numbers were required, a pseudorandom

multiplicative congruential generator was used which was based on the

algorithm of the IMSL (1982) subroutine GGUBS, except that instead of a

multiplier of 75--16,807, a multiplier of 764,261,123 was used. The latter.

multiplier performed well in tests by Fishman and Moore (1982), and was among

those recommended by Maindonald (1984: 280-281). The algorithm using the

latter multiplier was also substituted whenever the IMSL subroutines made

calls to the IMSL uniform variate generators GGUBFS or GGUBS. Goodness of fit

tests using the G statistic for data classified into categories (Sokal and

Rohlf 1969: sections 16.1-16.2) indicated that the permutation, Weibull,

negative binomial, Poisson, and binomial generators used in this study

performed as expected.
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RESULTS

Tables 9-12 list simulation estimates of the probability of a type I

error as a function of population density when using a statistical test with a

nominal significance level of 95%. The population densities used as

parameters in these tables were estimated as follows. First, typical apparent

annual population densities were estimated by taking averages of the values of

MESTiju (Table 6), weighted by stratum area (Table 1). The resulting

estimates for young-of-the-year and 1-yr-old walleye pollock, 1-yr-old

sablefish, and young-of-the-year Pacific cod were, respectively, 610, 256,

4.34, and 3.02 fish/10,000 m2. Populations sparser and denser than these

typical densities were then simulated in half order of magnitude increments.

(A half order of magnitude increment is defined as a change by a factor of

approximately 3.16.) This was done to indicate how simulated type I error

rates change as a function of population density. Since the null hypothesis

was assumed to be true in Tables 9-12, in each case PDYlu = PDY2u.

Similarly, Tables 13-16 list simulation estimates of the probability of

correctly detecting specified changes in population levels between years. A

change was counted as correctly detected if 1) the approximate F-statistic

corresponding to a change between years was significant, and 2) the estimate

of c1u was greater than or essentially equal to the estimate of c2u. This

latter condition was used because PDY1u > PDY2u.

In Tables 9-16, each probability was estimated by dividing the number of

times a type I error or correct detection occurred by the total number of

replicates; 400 replicates were used for each table entry. This large number

of replicates was used so that multiple comparisons could be made with

confidence. A constant number of replicates was used for simplicity, although
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Table 9 .--Predicted probabilities of a type I error? as a function of total
population density of young-of-the-year walleye pollock and annual
sample size.

*A type I error is defined as rejecting the null hypothesis when the null
hypothesis is true. The null hypothesis was that there was no change in
total annual population size in the survey area. An F-test based on 'the
method of Brown and Forsythe (1974a) with a nominal significance level of 95%
was used in conjunction with a modified form of analysis of variance applied
to catch per unit effort data. Each probability was estimated using 400
replicates.
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Table 10 .--Predicted probabilities of a type I error* as a function of total
population density of 1-yr-old walleye pollock and annual sample
size.

*A type I error is defined as rejecting the null hypothesis when the null
hypothesis is true. The null hypothesis was that there was no change in
total annual population size in the survey area. An F-test based on the
method of Brown and Forsythe (1974a) with a nominal significance level of 95%
was used in conjunction with a modified form of analysis of variance applied
to catch per unit effort data. Each probability was estimated using 400
replicates.
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Table 11 .--Predicted probabilities of a type I error* as a function of total
population density of 1-yr-old sablefish and annual sample size.

*A type I error is defined as rejecting the null hypothesis when the null
hypothesis is true. The null hypothesis was that there was no change in
total annual population size in the survey area. An F-test based on the
method of Brown and Forsythe (1974a) with a nominal significance level of 95%
was used in conjunction with a modified form of analysis of variance applied
to catch per unit effort data. 'Each probability was estimated using 400
replicates.
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Table 12 .--Predicted probabilities of a type I error* as a function of total
population density of, young-"of-the-year Pacific cod and annual
sample size.

*A type I error is defined as rejecting the null hypothesis when the null
hypothesis is true. The null hypothesis was that there was no change in
total annual population size in the survey area. An F-test based on the
method of Brown and Forsythe (1974a) with a nominal significance level of 95%
was used in conjunction with a modified form of "analysis of variance applied
to catch per unit effort data. Each probability was estimated using 400
replicates.
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Table 13 .--Predicted probabilities* (%) of the correct detection of the
direction of change in total annual population size of
young-of-the-year walleye pollock, as a function of annual
population densities and annual sample size.

*For an F-test based on the method of Brown and Forsythe (1974a) with a
nominal significance level of 95% in conjunction with a modified form of
analysis of variance applied to catch per unit effort data. The null
hypothesis was that there was no change in total annual population size in
the survey area. Each probability was estimated using 400 replicates..
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Table 14 .--Predicted probabilities* (%) of the correct detection of the
direction of change in total annual population size of 1-yr-old
walleye pollock, as a function of annual population densities and
annual sample size.

*For an F-test based on the method of Brown and Forsythe (1974a) with a
nominal significance level of 95% in conjunction with a modified form of
analysis of variance applied to catch per unit effort data.. The null
hypothesis was that there was no change in total annual population size in
the survey area. -Each probability was estimated using 400 replicates.
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Table 15. --Predicted probabilities* (%) of the correct detection of the
direction of change in total annual population size of 1-yr-old
sablefish, as a function of annual population densities and annual
sample size.

*For an F-test based on the method of Brown and Forsythe (1974a) with a
nominal significance level of 95% in conjunction with a modified form of
analysis of variance applied to catch per unit effort data. The null
hypothesis was that there was no change in total annual population size in
the survey area. Each probability was estimated using 400 replicates.
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Table 16 .--Predicted probabilities*, (%) of- the correct detection of the
direction of change in total annual population size of
young-of-the-year Pacific cod, as a function of annual population
densities and annual sample size.

*For an F-test based on the method of Brown and Forsythe (1974a) with a
nominal significance level of 95% in conjunction with a modified form of
analysis of variance applied to catch per unit effort data.. The null
hypothesis was that there was no change in total annual population size in
the survey area. Each probability was-estimated using 400 replicates.
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multistage sampling and other methods discussed by Angers (1984) could

presumably be used to reduce the number of replicates needed to achieve high

levels of precision. Each replicate used for Tables 9-16 and Appendix

Table A-l was calculated using a sequence of pseudorandom numbers which did

not overlap the sequences of pseudorandom numbers used to calculate the other

replicates. Each replicate can therefore be regarded as statistically 

independent of the other replicates. Since each probability being estimated

can be regarded as fixed for a given table entry, and since each replicate is

independent of the other replicates, the counts used to estimate the

probabilities can be regarded as coming from a binomial distribution. Any of

the usual methods for confidence intervals for the parameter of a binomial

distribution can be applied to these probabilities, such as those reviewed by

Matuszetiski and Sotres (19851. For multiple comparisons, the usual methods of

contingency or frequency table analysis can be used to analyze the original

count data -(for instance, see Dixon 1983: chapter 11). Suppose that p

represents any of the 180 estimated Probabilities in Tables 9-16, and we wish

to determine appropriate- multiple confidence intervals for these

probabilities. Then using a normal approximation (Snedecor and Cochran 1980:

section 7.8) for the most imprecise case of p= 50% it can be shown that the

180 confidence intervals given by (p-9.05%, p+9.05%) have a greater than 950

chance of including all of the true underlying probabilities. Although this

illustrates the precision resulting from use of 400 replicates, more precise

confidence intervals are possible for p unequal to 50% by taking the actual

estimates of p into consideration instead of using the worst case p=50%.

Table 17 indicates that estimated type I error rates in Tables 9-12 were

not different at individual significance levels of 95% from the expected

type I error rate of 5% in the following cases: sample densities of 60, 120,
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Table 17 .--Significance of differences between actual counts of type I errors
in Tables 9-12 and the expected 5% type I error rate, as a function
of species, age group, and survey sample size.

*The G-statistic is defined in Sokal and Rohlf (1969: section 16.1).
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and 180 hauls/year for young-of-the-year pollock; 120 and 180 hauls/year for

1-yr-old pollock) and 180 hauls/year for 1-yr-old sablefish. For young-of-

the-year Pacific cod, estimated type I error-ratesdiffered at individual

significance levels of 95% from the expected type I error rate at all three

sampling densities. Nonetheless, for many uses the departures from the

expected type I error rate may not be of practical significance except for the

sample density of 60 hauls/year for young-of-the-year Pacific cod; estimated

type I error rates were 26% or more for this case, in contrast to the maximum

estimate of 10.5% for the other cases in Tables 9-12.

The excessive type I error rates for young-of-the-year Pacific cod using

the sample density of 60 hauls/year (Table 12) apparently were the result of

only allocating 1 haul/year in the simulations to the Wide Bay stratum

(Table 8). When 2 hauls/year were allocated to the Wide Bay stratum and

8 hauls/year were allocated to the south Sitkalidak Strait stratum, with all

other stratum allocations and parameters the same as for Table, 12, then the

type I error rates were greatly reduced (Table 18). However, the rates were

still significantly different from the expected 5% rate at a significance

level of >99.9% (G=35.872, df=5), mainly due to the low 0.250 estimated type I

error rate which occurred at the population density 0.302 fish/lO,OOO m2. In

1980, young-of-the-year Pacific cod were only caught in Wide Bay (Tables 5 and

6). As a result, whenever the 1980 data were used to determine simulated

population density in some year, which occurred with probability 2/3 for each

replicate survey, all the cod in that year were concentrated in Wide Bay.

When only 1 haul/year was allocated to Wide Bay, the sample variance of CPUE

in Wide Bay for each year was always assumed to equal zero, when in fact the

true variance was larger. This apparently was a principal cause of excessive

type I errors for this case, and increasing the allocation to 2 hauls/year
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Table 18. --Predicted probabilities of a type I error* with annual sample sizes
of 60 hauls/year (0.0384 hauls/km21 when 2 hauls/year are allocated
to the Wide Bay stratum and 8 haulslyear are Allocated to the south
Sitkalidak Strait stratum, as a function of total population
density of young-of-the-year Pacific cod.

*A type I error is defined as rejecting the null hypothesis when the null
hypothesis is true. The null hypothesis was that there was no change in
total annual population size in the survey area. An F-test based on the
method of Brown and Forsythe (1974a) with a nominal significance level of 95%
was used in conjunction with a modified form of analysis of variance applied
to catch per unit effort data. Each probability was estimated using 400
replicates.
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made possible a more accurate variance estimate. Since the geographic

distribution of fish is presumably not well known in advance of a survey, it

would seem prudent to require that a minimum of at least two hauls be

allocated to each stratum in each year to insure such problems do not occur.

Although the possibility was not investigated in this study, requiring a

minimum of two or more hauls per stratum in each year might result in improved

control of type I error rates for other species or age groups as well.

Improvements to Satterthwaite's approximation might also result in improved

control of type I error rates.

Examination of Tables 8 and 13-16 yields the following results regarding

the power of the F-test based on the method of Brown and Forsythe (1974a). 

The sampling rate of 0.08 hauls/km2 appeared sufficient to correctly

detect half order of magnitude changes in young-of-the-year pollock with >66%

probability, and order of magnitude changes in young-of-the-year and 1-yr-old

pollock and 1-yr-old sablefish with >74% probability.

The sampling rate of 0.12 hauls/km2 appeared sufficient to correctly

detect half order of magnitude changes in young-of-the-year and 1-yr-old

pollock with >62% probability , and order of magnitude changes in young-of-the-

year and 1-yr-old pollock and 1-yr-old sablefish with >94% probability.

These simulations provide evidence that young-of-the-year Pacific cod

were less well sampled in this survey. Ignoring the 0.04 hauls/km2 sampling

rate because of the problems with type I error rates, it appears that only 1.5

order of magnitude changes or greater were correctly detected in simulations

with probability >64%, and then only for the most dense sampling rate of

0.12 haul/km2 (Table 16).
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 DISCUSSION

Limitations 

The ANOVA method and F-test of Brown and Forsythe (1974a) based on the

Satterthwaite approximation appear valid for 2 yr of data (i.e., for J=2) as

long as enough samples are taken in each ANOVA cell so that the Satterthwaite

approximation is appropriate and the cell means are approximately normal; at

least two or more hauls per cell appears prudent. Simulations were performed

only for 2 yr of data, which meant that the ANOVA method and approximate F-

test were mathematically equivalent to a Student's t-test with df estimated by

Satterthwaite's approximation. For more than 2 yr of data, an improved

approximation often is necessary (Bubin 1982: section 4.4).

The ANOVA method and approximate F-test used in this study are expected

to be fairly robust if applied to other statistical distributions besides

those tested in this study., However, some other method may be more powerful

in specific cases. For instance, a maximum likelihood method based on a

specific distribution may be more powerful so long as it is applied to data

from that distribution or similar distributions.

No use is made in this study of correlations which may exist between the

CPUE of a given species or age group and additional explanatory variables

besides year and geographic region. For instance, if CPUE of one species or

age group is correlated with CPUE of another species or age group, it may be

possible to use this correlation to increase precision and reduce sample

sizes.

The estimate of trawl net path width used to calculate the original CPUE

data was apparently based on measurements made for nets towed using different

size V-doors than the V-doors used in this study. This may have caused some
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degree of bias in population size estimates in this study and in estimates of

the probability of detecting specified changes in population size.

Even if the estimate of average trawl net path width is essentially

correct, between-haul variability in path width may be significant (Wathne

1977; NWAFC 1981). This also could cause bias in CPUE data, since effort

calculated from average trawl width is used as a divisor. Catchability

coefficients unequal to 1.0 may also cause bias when CPUE is used as an

estimate of fish density.

If the CPUE values are unbiased estimators of fish per unit area in a

given geographical region, then the ANOVA method used here is essentially

unbiased in the following sense. Let the function "est" denote the ANOVA

estimate of a given parameter , and let MCPUE denote the sample mean of CPUE.

It can. be shown that

(30)

The quantity MCPUEiju is an unbiased estimator of fish per unit area if

individual values of CPUJ3 are unbiased estimators of fish per unit area.

Furthermore

(31)

closely approximates an unbiased estimator of the total population given by

Royall (1970: equation 11) as long as the total area swept by the trawl hauls

in region i is small compared to Ai. Therefore



58

provides an essentially unbiased estimate of the total population size in the.

entire survey area in year j, if individual CPUE values are unbiased.

However, if the CPUE values are biased estimators of the number of fish per

unit area, the ANOVA method used here does nothing to correct such biases.

The probabilities in Tables 9-16 can be considered uncertain estimates of

binomial or multinomial parameters , and have associated variances which

measure this uncertainty. These probabilities, especially the probabilities

of a "correct detection" in Tables 13-16, are also conditional on the

correctness of the mathematical models used as well as on the correctness of

the maximum likelihood parameter estimates. The maximum likelihood parameter

estimates undoubtedly include a certain amount of random error. The maximum

likelihood method is only asymptotically unbiased in general, and therefore

may have added some additional bias to the estimates, but such bias may be

minor compared to the random error and biases already in the data.

In Tables 13-16 the actual population levels in both years must be

specified in order to determine the probability of detecting the difference

between those levels. However, it is expected that this limitation will apply

to any method applied to similar data, since the variance of CPUE appears

dependent on mean CPUE. In these tables a qualitative definition of a correct

detection was used; namely, that the direction of change was correctly

estimated. Different sampling densities may be necessary if another

definition of a correct detection is used. Different sampling densities may
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also be necessary if the number of years is unequal to 2, the number of strata

is unequal to 12, or the amount of area surveyed is changed.' For example, a

survey covering a larger area may require fewer samples per unit area to

achieve a given probability of correctly detecting a change in total

population levels between years; and a survey covering a smaller area may

require more samples per unit area- (e.g., Cochran 1977: section 4.9).

The simulations described in this study were expensive in terms of the

central processor time needed on the Burroughs B7800 computer. The

simulations used to generate Tables 9-16 took 3.3, 2.9, 2.0, and 0.9 h off 

processor time, respectively, for young-of-the-year and 1-yr-old walleye

pollock, 1-yr-old sablefish, and young-of-the-year Pacific cod. For young-of-'

the-year pollock about 770 of the central processor time was spent generating

variates from' the negative binomial distribution.

Conclusions

Despite heteroscedasticity and non-normality, if sample sizes 'are

sufficiently large, then analysis of variance with appropriate constraints on

estimated interaction coefficients coupled with a modified F-test using

Satterthwaite's approximation provides a valid method to measure the changes

in estimated total population between 2 yr. This indicates that the

heteroscedasticity of the data used in this study was a more crucial factor

than non-normality in selecting a valid statistical test. At least 60 to

120 hauls/year (0.04 and 0.08 hauls/km2) were necessary to control type I

errors; a minimum of 2 hauls/year in each stratum also appeared necessary in

some cases. The direction of annual population changes of young-of-the-yeal

walleye pollock differing by a factor of 3.16 and direction of annual

population changes of 1-yr-old walleye pollock and sablefish differing by a
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factor of 10 can be detected with better than, 66% probability using

120 haul/year (0.08 hauls/h2). Smaller changes in population size can be

detected and type I error rates are better controlled if sample sizes (number

of trawl hauls) are increased.

It is suggested that this or related methods have wider applicability

than just to the data used in this study because: 1) it is frequently of

interest to combine density data from several different regions to make

estimates of total population in a combined region; 2) sample variances

calculated from density data frequently appear to be power functions of sample

means (Taylor et al, 1978), which generally implies that the data are

heteroscedastic; and 3) geographic region by year interactions may exist in

population density data for other regions, species, or age groups. For

example, see Pereyra et al. (1976: figs. VIII-11, VIII-21) regarding walleye

pollock and Pacific cod in the Bering Sea , and Francis and Hollowed (1984)

regarding Pacific whiting, Merluccius productus, in U.S. and Canadian waters

of the Pacific Ocean.

Suggestions for Further Research

Total population estimates in these surveys were inversely proportional

to the estimate of average trawl net path width. Either a normal or a beta

distribution could be fitted to- the path width data given in Wathne (1977) and

NWAFC (1981). A simple modification of the, present simulation model could

then be used to predict the effect of between-tow variability in trawl net

path width on population estimates; this may be helpful in assessing the

significance of path width variability.

Improvements to Brown and Forsythe's (1974a) use of Satterthwaite's

approximation could be tested for robustness to non-normality; this may be
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especially important for more than 2 yr of data.- Possible methods to test are

the method of Rubin (1982: section 4.2(iv)) discussed in Appendix C, and the

methods of Tan (1982a: 45) and Kaiser and Bowden (1983). Because both the

numerator and denominator of the F statistic in Equation 22 can be expressed

as quadratic forms, this F statistic can be reexpressed as a single quadratic

form (e.g., Harrison and. McCabe 1979: 498). Consequently, it may be possible

to evaluate its exact significance assuming the ANOVA cell means are

approximately normal, perhaps by using the algorithm of Davies (1980). This

method might also prove to be robust for non-normality.

The effects of different experimental designs for allocation of sample

sizes (number of hauls) could be investigated with the present simulation

model. An example is further investigation of the effect on type I error

rates of requiring sample sizes of two or more hauls per year to-be allocated

to each stratum.

A more rigorous definition of a "correct detection" could be implemented

in simulations. Instead of merely considering the correct direction of

change, confidence intervals could be calculated for the estimated total

annual population sizes in a simulated replicate survey, perhaps by using

methods based on those of Rubin (1982: section 4.2(iv)) or Raiser and Bowden

(1983). A correct detection could then be defined as the inclusion of all the

actual population levels used as simulation parameters within the estimated

confidence intervals.

Improved models of the statistical distribution of fishing effort could

be implemented.

A faster method of generating negative binomial variates may

substantially speed up simulations.
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Multistage sampling and- other methods (Angers 1984) could reduce the

number of replicate simulated surveys needed to estimate probabilities of

type I error and probabilities of a correct detection of a change in

population size: this would also speed up simulations.

Sensitivity analyses using the present model or simple modifications

would be useful. The effect of random errors in parameter estimates and in

measurement of fishing effort could be predicted. Predicted consequences of

different statistical distributions for fishing effort could be explored.

Alternative statistical methods and tests could be implemented and

compared to the method in this study. The significance of the F statistic in

Equation 22 could be evaluated using a bootstrap or jackknife method (Efron

and Gong 1983) instead of Satterthwaite's approximation. Maximum likelihood

or iteratively reweighted least squares methods (Stirling 1984) could be used

to estimate parameters: statistical tests commonly used with these methods

could be used in simulations instead of an F-test using Satterthwaite's

approximation. Methods for estimating the regression of logarithms of sample

variances of CPUE on logarithms of sample means of CPUE could be implemented

which take into consideration that sample means have random variation not

primarily due to measurement error (ticker 1973; Dolby 1976).

Satterthwaite's approximation does not make use of the assumption that

variance of CPUE was a power function of the mean. When this assumption is

valid, it may be possible to use it to improve the estimate of df in

Equation 23 by substituting estimates of variance calculated using the power

function relationship in place of the sample variances. It may also be

possible to extend the robust weighted method of Carroll and Ruppert (1982) to

take into account that the true underlying variance of CPUE may plausibly

equal zero and that the sample variance of CPUE may frequently equal zero.
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Either of these methods may be more powerful than the method used in this

paper.

Alternative tests and methods could be compared in simulations using

criteria such as power, robustness , control of type I error rates, bias,

variance, mean-squared error, and computational speed. The bootstrap, maximum

likelihood, and iteratively reweighted least squares methods may be

computationally slower than the method used in this study, so that comparisons

may need to be done using fewer geographic regions (strata) than were used in

this study.

Despite non-normality, it may be possible to approximate the sample sizes

needed to detect population changes without using simulation (Tan 1982a: 54).

A test of the assumption that catches have an underlying negative

binomial, Poisson, or binomial distribution would be useful. Perhaps the

method of Bol'shev and Mirvaliev (1978), which increases the power of a

chi-square goodness-of-fit test by appropriately grouping the data, could be

extended so that it is applicable despite the variability of fishing effort

from haul to haul and despite possible changes in fish density between strata

and years.

Further investigation of appropriate ways to quantitatively model the

density dependence of geographic and statistical distributions of fish species

and age groups may suggest improvements to the simulation model used in this

study.
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APPENDIX A

UNCONTROLLABLE TYPE I ERRORS DUE TO A NONLINEAR TRANSFORMATION

Table A-l illustrates the uncontrollable type I errors which can result

from the use of the popular nonlinear variance-stabilizing transformation

log(CPUE+l), especially when interaction terms are present; Use of this

transformation is reviewed in Green (1979: section 2.3.9). Although not

reported here, excessive type I error rates of similar magnitude occurred when

interaction terms were present and a rank or power transformation was used in

place of log(CPUE+l).

The null hypothesis (Equation 161, parameters, and methods used to

generate Table 10 were also used to generate Table A-l, except the values

loglO(CPUE+l) were substituted for the CPUE values in the ANOVA calculations,

an ordinary F-test was used , and Equation 20 was changed so that

for each q. In the case without the presence of geographic region by year

interactions, the values of MESTiju for 1-yr-old walleye pollock calculated

from 1980 data (Table 6) were substituted for the values of MESTiju calculated

from 1981-82 data.

For the case with interactions, the actual counts of type I errors used

to calculate the probabilities in Table A-l were significantly different from

the expected 5% error rate at greater than the 99.99% level (G=4449, df-15).

Although the counts of type I errors for the case without interactions also

were significantly different from the expected 5% error rate at greater than
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Table A-l .--Predicted probabilities of a type I error* for an ordinary F-test
applied to catch per unit effort (CPUE) values of 1-yr-old walleye
pollock transformed using the function log(CPUE+l), as a function
of the presence or absence of geographic region by year
interactions, the total population density of 1-yr-old walleye
pollock, and annual sample size.

*A type I error is defined as rejecting the null hypothesis when the null:
hypothesis is true. The null hypothesis was that there was no change in
total annual population size in the survey area. An F-test with a nominal
significance level of 95% was used in conjunction with ordinary two-way
analysis of variance. Each probability was estimated using 400 replicates.
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the 99.99% level (G=360.4, df=l5), the smaller G statistic indicates that the

departures from the expected rate were less drastic. This shows that the

presence of two-way interactions were one major cause of uncontrollable type I

errors when this nonlinear transformation was used. Nonetheless, the

transformation log(CPUE+l) is not recommended for this data, because of the

problems with incorrect type I error rates even when interactions were not

present.
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APPENDIX B

COMPUTATIONAL FORMULAS FOR THE METHOD OF BROWN AND FORSYTHE

Brown and Forsythe (1974a) presented their method using orthonormal

contrast coefficients. However, in this Appendix it is shown that it is not

necessary to actually calculate the orthonormal contrast coefficients. It is

assumed that the null hypothesis being tested is that no changes in total

population size occurred between years (Equations 16 and 19). The formulas

derived, however, can be easily generalized to test other null hypotheses: for

instance, 'that there are no changes in total population size between

geographic regions, or that there are no geographic region by year

interactions in total population size. The formulas derived can also be used

in the method of Rubin (1982: section 4.2(iv)) described in Appendix C.

Let n be the total number of samples i.e., in this study

The general linear model can be expressed in the form (Searle 1971: 164)

Y = X b + e , ( 3 5 )

where Y is an n by 1 matrix of observed values of the dependent variable, X is

an n by p dimensional design matrix, b is a p by 1 dimensional matrix of

parameters, and e is an n by 1 dimensional matrix of random "errors." Let r

equal the rank of X; it is assumed that r < p. Letb be the least squares

estimate of b. In this study b is the vector of parameters in Equation 17;

i.e.,
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(36)

and

(37)

Let K be a matrix such that the elements of K'b are a linearly

independent subset of the elements of b. For example, if

where Ei is a p by 1 dimensional vector, with one in its i
th entry and zeros

elsewhere, then

(39)

is a vector of linearly independent elements of b. In addition, K'b is

estimable because of the constraints expressed by Equations 18, 20, and 21

(Scheffe 1959: section 1.4, especially theorem 4). The constraints expressed

by Equations 18, 20, and 21 can be reexpressed using a matrix equation of the

form

P'b = (0 .m. 0)' , (40)

where p is a p by (I+J+2) dimensional matrix of appropriate constants.A p b y

(p-r) dimensional matrix P is formed by choosing p-r linearly independent

columns of P in such a manner (Searle 1971: 21-22) that all rows-of the matrix

(41)
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are linearly independent (a convenient computational formula for X'X will be

given in Equation 48). Matrix P satisfies an equation similar to Equation

i . e . ,

P'b = (0 . . . 0)' . 42)

40;

The matrix P'b is not estimable (Searle 1971: section 5.7a). If I=4 and J=3,

then an example of a P' which could be used in this study is

In this Appendix, let G be a p by p dimensional matrix equal to the upper left

submatrix of S-l ; matrix G is a particular generalized inverse of X'X (Searle

1971: section 1.5). Since S is symmetric, so is S-l, which implies that G is'

symmetric and G = G'. It is suggested that the method used to calculate S-1

include a test of whether S is algorithmically singular, as did the IMSL

(1982) subroutine LEQlS used in this study. If the test indicates S is

algorithmically singular, then the rows of S are effectively linearly

dependent, which may indicate that the matrix P was incorrectly chosen. If a

suitable matrix P does not exist which causes the rows of S to be linearly

independent, then the method of Searle (1971: section 5.6a) may be

appropriate, but such a problem did not arise in this study and this

alternative was not investigated.

Once G has been calculated, the least squares estimate of b satisfying

the constraints imposed by Equations 18, 20, and 21 is given by (Searle 1971:
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table 5.13 and section 5.7a)

(44)

The null hypothesis can be expressed in the form

If Equation 45 is true, then Equation 18 implies also that clu = 0. One

possible numerator sum of squares for an F-test of the null hypothesis is

(Searle 1971: 192)

For ordinary analysis of variance, it can be proven that there exists an (I x

J) by p dimensional matrix Z such that

where m is the (I x J) by 1 dimensional vector of the sample means in each

ANOVA cell, and N is the (I x J) by (I x J) dimensional matrix with the nij

along its diagonal and zeros elsewhere. The matrix Z consists of all the

unique rows of X; i.e., Z can be determined from X by eliminating all rows of

X which are duplicates of any other row. When calculating S using

Equation 41, it is convenient to note that

X’X = Z’NZ . (48)

If I = 4 and J = 3, then an example of Z of the type used in this study is



79

Equations 46 and 47 imply that

Q

(49)

.

(50)

If (K'GK)" is positive definite, which was the case in this study, then there

exists a nonsingular square matrix R (Searle 1982: 206). such that

It can be proved that

Let

T = NZG'KR . (53)

Then Equations 51 and 53 imply that

TT' = NZG’K(K’GK)-‘K’GZ’N’ . (54)

Equation 54 is a convenient computational formula for TT', because it is

unnecessary to calculate T and only the operations of matrix multiplication,

transposition, and inversion are used. Although Brown and Forsythe (1974a:

section 4) used a different notation, in effect they required that the
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eknents of T satisfy the conditions for orthonormal contrast coefficients; T

does satisfy these conditions, as is proved below.

First, it is proved that the elements of T-satisfy the conditions for

contrast coefficients. In the remainder of this paragraph, it is assumed that

m is an (I x J) by 1 dimensional vector with each element equal to one and

that Y is an n by 1 dimensional vector with each element equal to one. The

elements of T satisfy the condition for contrast coefficients if

m'T = (0 . . . 0) . (55)

Equations 47 and 53 imply

(56)

From Searle (1971: 80, equation 20) , it is known that the least squares

solution b corresponding to Y must satisfy the equation

X'Xb = X'Y . (57)

Now Equations 17, 35, and 36 imply that each element of the first column of X

is equal to one, which means that

XEl = Y ,

which in turn implies that

X'XE1 = X'Y ;

(58)

(59)

l.e., that El satisfies the condition for 2 given by Equation 57. In

addition, setting b = El satisfies the constraints imposed by Equations 18,

20, and 21. This implies that

b = El (60)
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is the unique solution satisfying these constraints (Scheffe 1959:

section 1.4). Consequently, Equation 44 implies that

E1 = GX'Y .

Equation 38 implies that

(Ej)*K = (0 . . . 0) .

(61)

(62)

Then combining Equations 56, 61, and 62 we have

which shows that the condition for contrast coefficients given by Equation 55

is satisfied.

It is next proved that the elements of T satisfy the condition for

orthonormality; i.e., that

where, in this paragraph, I represents the identity matrix of appropriate

dimension. It is known that the G used in this study satisfies the second

Penrose condition (Searle 1971: 2317 i.e.,

(65)

Making use of the fact that this G = G' and that N = N', and using

Equations 48, 52, 53, and 65, we have
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(66)
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APPENDIX C

COMPUTATIONAL FORMULAS FOR THE METHOD OF RUBIN

Equations 22, 23, and 54 can be used in the method of Rubin (1982:

section 4.2(iv)) and Rubin (1983: equation 5). However, instead of assuming

that the df of the numerator of the F statistic in Equation 22 equals J-l as

in the method of Brown and Forsythe (1974a), the df of the numerator is

assumed to equal

[trace(TT'v)12

DFN =
trace( [TT'I;')

(67)

where Rij equals row [I x (j-l) + i] of TT'V, and Cij equals column

[I x (j-1) + i] of TT'V. If J = 2, then it can be proved that DFN = 1 (Rubin

1982: section 4.2, equation 24). Since in general DFN is not an integer, it

is appropriate to use IMSL (1982) subroutine MDFDRE to evaluate the

significance of the F statistic in Equation 22. If the denominator of

Equation 67 is < 0, then DFN can be set equal to J-l.
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